Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Inflamm Res ; 72(2): 301-312, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2254945

ABSTRACT

BACKGROUND: SARS-CoV-2-induced severe inflammatory response can be associated with severe medical consequences leading to multi-organ failure, including the liver. The main mechanism behind this assault is the aggressive cytokine storm that induces cytotoxicity in various organs. Of interest, hepatic stellate cells (HSC) respond acutely to liver injury through several molecular mechanisms, hence furthering the perpetuation of the cytokine storm and its resultant tissue damage. In addition, hepatocytes undergo apoptosis or necrosis resulting in the release of pro-inflammatory and pro-fibrogenic mediators that lead to chronic liver inflammation. AIMS: The aim of this review is to summarize available data on SARS-CoV-2-induced liver inflammation in addition to evaluate the potential effect of anti-inflammatory drugs in attenuating SARS-CoV-2-induced liver inflammation. METHODS: Thorough PubMed search was done to gather and summarize published data on SARS-CoV-2-induced liver inflammation. Additionally, various anti-inflammatory potential treatments were also documented. RESULTS: Published data documented SARS-CoV-2 infection of liver tissues and is prominent in most liver cells. Also, histological analysis showed various features of tissues damage, e.g., hepatocellular necrosis, mitosis, cellular infiltration, and fatty degeneration in addition to microvesicular steatosis and inflammation. Finally, the efficacy of the different drugs used to treat SARS-CoV-2-induced liver injury, in particular the anti-inflammatory remedies, are likely to have some beneficial effect to treat liver injury in COVID-19. CONCLUSION: SARS-CoV-2-induced liver inflammation is a serious condition, and drugs with potent anti-inflammatory effect can play a major role in preventing irreversible liver damage in COVID-19.


Subject(s)
COVID-19 , Liver Diseases , Humans , SARS-CoV-2 , Cytokine Release Syndrome , Inflammation , Anti-Inflammatory Agents/therapeutic use , Necrosis
2.
PLoS One ; 17(10): e0275101, 2022.
Article in English | MEDLINE | ID: covidwho-2079740

ABSTRACT

BACKGROUND: The COVID-19 pandemic claimed millions of lives worldwide without clear signs of abating despite several mitigation efforts and vaccination campaigns. There have been tremendous interests in understanding the etiology of the disease particularly in what makes it severe and fatal in certain patients. Studies have shown that COVID-19 patients with kidney injury on admission were more likely to develop severe disease, and acute kidney disease was associated with high mortality in COVID-19 hospitalized patients. METHODS: This study investigated 819 COVID-19 patients admitted between January 2020-April 2021 to the COVID-19 ward at a tertiary care center in Lebanon and evaluated their vital signs and biomarkers while probing for two main outcomes: intubation and fatality. Logistic and Cox regressions were performed to investigate the association between clinical and metabolic variables and disease outcomes, mainly intubation and mortality. Times were defined in terms of admission and discharge/fatality for COVID-19, with no other exclusions. RESULTS: Regression analysis revealed that the following are independent risk factors for both intubation and fatality respectively: diabetes (p = 0.021 and p = 0.04), being overweight (p = 0.021 and p = 0.072), chronic kidney disease (p = 0.045 and p = 0.001), and gender (p = 0.016 and p = 0.114). Further, shortness of breath (p<0.001), age (p<0.001) and being overweight (p = 0.014) associated with intubation, while fatality with shortness of breath (p<0.001) in our group of patients. Elevated level of serum creatinine was the highest factor associated with fatality (p = 0.002), while both white blood count (p<0.001) and serum glutamic-oxaloacetic transaminase levels (p<0.001) emerged as independent risk factors for intubation. CONCLUSIONS: Collectively our data show that high creatinine levels were significantly associated with fatality in our COVID-19 study patients, underscoring the importance of kidney function as a main modulator of SARS-CoV-2 morbidity and favor a careful and proactive management of patients with elevated creatinine levels on admission.


Subject(s)
COVID-19 , Humans , Aspartate Aminotransferases , Biomarkers , COVID-19/epidemiology , COVID-19/mortality , Creatinine , Dyspnea , Lebanon/epidemiology , Morbidity , Overweight , Pandemics , SARS-CoV-2 , Tertiary Care Centers
3.
Biomed Pharmacother ; 146: 112518, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1562447

ABSTRACT

SARS-CoV-2 causes respiratory illness with a spectrum of systemic complications. However, the mechanism for cardiac infection and cardiomyocyte injury in COVID-19 patients remains unclear. The current literature supports the notion that SARS-CoV-2 particles access the heart either by the circulating blood cells or by extracellular vesicles, originating from the inflamed lungs, and encapsulating the virus along with its receptor (ACE2). Both cardiomyocytes and pericytes (coronary arteries) express the necessary accessory proteins for access of SARS-CoV-2 particles (i.e. ACE2, NRP-1, TMPRSS2, CD147, integrin α5ß1, and CTSB/L). These proteins facilitate the SARS-CoV-2 interaction and entry into the pericytes and cardiomyocytes thus leading to cardiac manifestations. Subsequently, various signaling pathways are altered in the infected cardiomyocytes (i.e. increased ROS production, reduced contraction, impaired calcium homeostasis), causing cardiac dysfunction. The currently adopted pharmacotherapy in severe COVID-19 subjects exhibited side effects on the heart, often manifested by electrical abnormalities. Nonetheless, cardiovascular adverse repercussions have been associated with the advent of some of the SARS-CoV-2 vaccines with no clear mechanisms underlining these complications. We provide herein an overview of the pathways involved with cardiomyocyte in COVID-19 subjects to help promoting pharmacotherapies that can protect against SARS-CoV-2-induced cardiac injuries.


Subject(s)
COVID-19/metabolism , Heart Diseases/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , SARS-CoV-2/metabolism , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/metabolism , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/metabolism , Heart Diseases/drug therapy , Heart Diseases/epidemiology , Humans , Myocytes, Cardiac/drug effects , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
4.
Inflamm Res ; 71(1): 39-56, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1525531

ABSTRACT

The COVID-19 pandemic created a worldwide debilitating health crisis with the entire humanity suffering from the deleterious effects associated with the high infectivity and mortality rates. While significant evidence is currently available online and targets various aspects of the disease, both inflammatory and noninflammatory kidney manifestations secondary to COVID-19 infection are still largely underrepresented. In this review, we summarized current knowledge about COVID-19-related kidney manifestations, their pathologic mechanisms as well as various pharmacotherapies used to treat patients with COVID-19. We also shed light on the effect of these medications on kidney functions that can further enhance renal damage secondary to the illness.


Subject(s)
COVID-19 Drug Treatment , COVID-19/physiopathology , Kidney Diseases/physiopathology , Kidney/injuries , Acute Kidney Injury/complications , Aldosterone/metabolism , Angiotensins/chemistry , Antibodies, Monoclonal, Humanized/administration & dosage , Autopsy , Biopsy , COVID-19/complications , COVID-19 Vaccines , Dexamethasone/administration & dosage , Enoxaparin/administration & dosage , Heparin/administration & dosage , Heparin, Low-Molecular-Weight/administration & dosage , Humans , Inflammation , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Kidney Diseases/complications , Kidney Transplantation , Lopinavir/administration & dosage , Pandemics , Renal Replacement Therapy , Renin-Angiotensin System , Ritonavir/administration & dosage , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL